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Abstract

In the field of dynamics for a dusty fluid, the volume of the dust particles and flow behaviour of particles in different
conditions is very important in engineering problems such as atmospheric fallout, nuclear reactor, powder technology,
performance of solid fuel rocket nozzles, air craft icing and so many others. An analysis is presented in this paper to
study the effects of thermal dispersion and Viscous dissipation on unsteady flow of a viscous incompressible dusty gas
through a hexagonal channel of uniform cross section under the influence of magnetic field and time dependent pressure
gradient. The results show the change in velocity profile of gas and particles in the presence of magnetic field with time,

thermal dispersion and volume fraction ¢.
© 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The laminar flow of dusty viscous fluid with different
initial and boundary conditions was studied [1-4] due to
its applications in Engineering Problems. Most of these
researches neglected the effects of thermal dispersion and
viscous dissipation on unsteady flow of viscous incom-
pressible dusty gas with volume fraction. Rudinger [5]
showed the error thus introduced from significant to
large. Nayfeh [6] developed the equation of motion of
dusty fluid taking into account the volume fraction of
dust particles.

In the Present Paper, we study the effects of thermal
dispersion and viscous dissipation on unsteady MHD
flow of a dusty gas through a hexagonal channel. Ex-
plicit expressions of velocities for both the gas and dust
particles have been obtained in exact form by using in-
tegral transform techniques. The effects of magnetic field
and thermal dispersion on the unsteady flow of dusty
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gas have been shown graphically and presented in tab-
ular form.

2. Formulation

Let us consider the effects of thermal dispersion and
viscous dissipation on the motion of a dusty fluid con-
sidering volume fraction through a hexagonal channel of
uniform cross section under the influence of magnetic
field. Then, the governing equations are written in the
following form:

p(l*(f))%:( f¢){*2§+“<2271:+2%)}
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where p is the density of the gas, ¢ is the volume fraction
of the dust particles, Ny is the number density of the
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particles, m is the mass of each dust particle, K is the
stoke’s resistance coefficient, ¢ is the electrical conduc-
tivity, Gy is the resultant body force on the gas. u and v
represent the velocity of the gas and dust particles. In-
troducing the following non-dimensional quantities.
Introduce: x = ax’, y = ay', z = aZ, pa* = pvp/, tv =

2
@t au=vil, M =" and § =
p(1=9)

Gx
p(1=¢)

av = v’

Egs. (1) and (2) become
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and 7 is the spin gradient viscosity. The corresponding
non-dimensional initial and boundary conditions are

(i)  u(x,y,t) =0=v(x,p,1) for t<0 (6)
(i)  u(x,y,6)=0
= y(x,y,t) on the boundary for > 0
(7)
Let
x1=y, x,=y—+/3x and x3=y+./3x (8)

Under the transformation of Eq. (8), Egs. (3) and (4)
become

g (T8, T
ot o 3 ol Ox; Ox, Ox; O3

- axza;x3>u+sl(vfu) —Mu+S 9)
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+ @x?;)q - 46x?;x3 } u) +9(u—0) (10)

Subject to the initial and boundary conditions.
(1) u(xi,x2,x3,6) =0
= v(xl,xz,x3,l) for 1 < 0,7 =0 at

.xl:?,)@:i\/g:)g. (11)

. Ou ov Ou ov Ou ov

We use the technique of integral transforms to solve
the problem as follows:

On account of # and v being an even function of x; x,
x3 the finite Fourier sine transforms vanish. Multiplying
Egs. (9) and (10) by cos(Pyx;) cos(Qqx2) cos(Rx3), and
then integrate it with the limit 0 to ‘/75, 0to /3, and 0 to
/3 and using conditions. (11) and (12), we get.

oU
E:apqrf(t)—bpqu+gl(V—U)—MU+S, (13)
ov
E = (»bl [apqrf(l) - bpqu] + V(“ - 1.7), (14)
(= 2 2 2
where apq = POR and bygr =P, + Oy + R, (15)
and
u=0v
VIRV V3
= / / / u(x1,x2,x3,1) cos(Pyxy)
0 0 0
cos(Qqxz) cos(Rx3) dX; dX, dX; (16)

Solving Egs. (13) and (14) by using Laplace transforms
under the transformed initial condition U = 0 = ¥ and
t =0, we get

SU = apqef(S) — by U = 61(V = U) = MU +S  (17)

sV = (f)/[apqr]_((s) - bquU} + V(U - V) (18)

where U, 7, f(s) are the Laplace transform of respective
quantities.

U:apqrf’(S) Site S+e (19)
S —8)|S—8 S-5
— @ f(S) [Si¢ +e S +e
V= 4 - 20
Si—%)| S=-85 S—5 (20)
S; and S, are two roots of quadratic equation
S% 4 (bpgr + 81+ 7+ M — ) + by = 0. (21)
and hence,
1
S = ) (bpgr + &1 +7+M—S)

+ \/{(bpqr-i-Sl +y+M-5) _48bpqr}} (22)
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(23)

By applying convolution theorem and put f(¢) = C,
and C is an absolute constant, we get

Table 1
Variation of U/C and V' /C for various values of @, X, M, and S
s X M @ U/C v/C
0 0 5 0 0.1586 0.1499
0.04 0.1595 0.1518
0.08 0.1604 0.1536
10 0 0.1498 0.1393
0.04 0.1511 0.1417
0.08 0.1524 0.144
0.2 5 0 0.1474 0.1394
0.04 0.1482 0.1412
0.08 0.1491 0.1429
10 0 0.1394 0.1298
0.04 0.1406 0.132
0.08 0.1418 0.1341
1 0 5 0 0.1604 0.1522
0.04 0.1612 0.154
0.08 0.162 0.1557
10 0 0.1517 0.1416
0.04 0.153 0.1438
0.08 0.1542 0.1461
0.2 5 0 0.1491 0.1415
0.04 0.1498 0.1432
0.08 0.1505 0.1447
10 0 0.1412 0.1319
0.04 0.1423 0.134
0.08 0.1434 0.136
2 0 5 0 0.1621 0.1545
0.04 0.1629 0.1561
0.08 0.1636 0.1577
10 0 0.1537 0.1438
0.04 0.1548 0.146
0.08 0.156 0.1482
0.2 5 0 0.1506 0.1436
0.04 0.1513 0.1452
0.08 0.1519 0.1466
10 0 0.1429 0.1339
0.04 0.144 0.136
0.08 0.145 0.1379

_ 16C aqu [1 _ {(Sl =+ bpqr)eSZt

u=_=
3\/§ p=q=r=0 bpqr Sl - SZ
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(24)
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(25)

3. Discussion

Table 1 and Figs. 1-4 are self explanatory. Here, the
variations of velocity of dust and gas particles for vari-
ous values of the parameters such as the thermal dis-
persion parameter S, the magnetic parameter M, and the
volume fraction ¢ are shown. These figures and the table
clearly show that the gas particles move faster than the
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Fig. 1. Velocity profile for f=10, g=566, S=1 at
M =0,5,10.
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Fig. 2. Velocity profile for f =10, g=566, S=1 at
M =0,5,10.

—8—5=2

0.6
—ir— §=2
05 | ——S=1
2 / \ 2 —&4—S=
0.4 \
Q
> 03
0.2
0.1
0+—1¥— . \ : .
X=0.0 0 0.4 0.8  X=0.2 0 0.4 0.8

¥

Fig. 3. Velocity profile for f =10, g=566, M =0 at
§=0,1,2.
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Fig. 4. Velocity profile for f=1.0, g=5.66, M =0 at
§=0,1,2.

dust particles, whereas the increasing values of the
magnetic parameter M decelerate the velocities of both
the gas and the dust particles, on the other hand in-
creasing values of thermal dispersion parameter S in-
crease the velocities of both the gas and the dust
particles. Also the similar effect on the velocities of both
the gas and dust particles is observed when the volume
fraction ¢ increases.
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